Perfekte Meßlösungen sichern Ihren Erfolg!

Application Note 66

Advanced Network Test Solutions:

SONET/SDH/PDH- und DWDM-Netze schnell und effizient testen mit WG CATS

Wandel & Goltermann Communications Test Solutions

Abkürzungen

AIS	Alarm Indication Signal
ANSI	American National Standards Institute
APS	Automatic Protection Switching
ATM	Asynchronous Transfer Modus
CATS	CVI Application Test Sequences
CRC	Cyclic Redundancy Check
DWDM	Dense Wavelength Division Multiplex
ES	Errored Seconds
GUI	Graphical User Interface
ITU-T	International Telecommunications Union
	Telecommunications
LOS	Loss of Signal
LOF	Loss of Frame
LW CVI	LabWindows CVI
NE	Network Element
PDH	Plesiochronous Digital Hierarchy
PRBS	Pseudo Random Bit Sequence
RX	Receiver
SES	Severely Errored Seconds
SDH	Synchronous Digital Hierarchy
SONET	Synchronous Optical Network
STM	Sychronous Transport Module
TX	Transmitter
US	Unavailable Seconds

Der Advanced Network Tester ANT-20 ist eine sehr leistungsfähige Testplattform für SDH, SONET, PDH- und ATM-Netze. Die in der vorliegenden Application Note beschriebene Software WG CATS (CVI Application Test Sequencer) ist zu diesem Gerät als Option erhältlich. Sie ermöglicht die Steuerung der Meßfunktionen aus automatisierten Programmabläufen heraus und läuft direkt auf dem internen PC des Meßgerätes.

Inhalt

SONET/SDH/PDH-Netze schnell und effizient testen mit WG CATS	3
Hohe Verfügbarkeit stellt neue Anforderungen an die Meßtechnik	3
Beispiel: Inbetriebnahme einer 2-Mbit/s-Mietleitung	4
Vergleich zwischen manueller Messung und Testautomation	5
Testautomation: Die wirtschaftliche Alternative	5
WG CATS: Die optimale Lösung für den Netzbetreiber	6
Erstellen automatisch ablaufender Meß- sequenzen mit Hilfe <i>"Generischer Testcases"</i>	7
Akzeptanz beim Benutzer steigt	9
Verfügbare Testcases	9
WG CATS vereinfacht Messungen an DWDM-Systemen	10
Ein übersichtliches Protokoll unterstützt die Reproduzierbarkeit	11

Impressum

Autor: Walter Besse

Herausgeber: Wandel & Goltermann GmbH & Co. Elektronische Meßtechnik Mühleweg 5 D-728000 Eningen u. A. Germany

Änderungen vorbehalten Bestell-Nr. D 05.99/WG1/66/3.5 Printed in Germany ©

SONET/SDH/PDH-Netze schnell und effizient testen mit WG CATS

Hohe Verfügbarkeit stellt neue Anforderungen an die Meßtechnik

Wenn heute die Telekommunikationsnetze eine Verfügbarkeit von nahezu 100% erreichen, so ist dies nicht zuletzt auch dem Einsatz moderner Meßtechnik bei der Qualitätssicherung zu verdanken. Der meßtechnische Aufwand bei der Einmessung und Wartung von Leitungen ist beachtlich und stellt einen hohen Kostenfaktor dar, der durch den zunehmenden Bedarf an neuen Leitungen ständig steigt. Um den Aufwand nicht ins Uferlose wachsen zu lassen, benötigen die Netzbetreiber wirtschaftliche Lösungsansätze für die Meßaufgaben bei Installation und Wartung von Netzelementen und Leitungen. Dabei stehen folgende Anforderungen im Vordergrund:

- Höhere Meßgeschwindigkeit und damit insgesamt geringerer Zeitaufwand
- Große Testtiefe, die das komplexe Zusammenspiel aller Funktionen sicherstellt
- Vermeidung möglicher Me
 ßfehler und damit gute Reproduzierbarkeit der Me
 ßergebnisse
- Leichte Interpretation der Meßergebnisse mit Vorgabe von Grenzwerten f
 ür eine Gut-/Schlechtaussage
- Dokumentation aller Meßergebnisse als Basis für Qualitäts- und Zuverlässigkeitsfragen
- Verifizieren der Norm-Konformität

Bei der herkömmlichen Prüfstrategie werden Testbzw. Einmeßvorschriften Punkt für Punkt abgearbeitet. Dazu müssen die Meßgeräte von Hand interaktiv bedient werden. Ebenso müssen Meßergebnisse meist noch manuell in ein Prüfprotokoll eingetragen werden. Diese klassische Vorgehensweise ist sehr zeitaufwendig und damit teuer. Außerdem können durch eine falsche Bedienung leicht Meßfehler vorkommen. Auch bei der Dokumentation kann es passieren, daß sich trotz größter Sorgfalt ein Fehler beim Ablesen der Meßergebnisse oder bei deren Eintragung ins Protokoll einschleicht. Diese Fehler führen dazu, daß sich die Meßergebnisse später nicht mehr eindeutig reproduzieren lassen. In der vorliegenden Application Note soll am Beispiel der Inbetriebnahme von Mietleitungen und bei Messungen an sehr komplexen Signalen von DWDM-Strecken gezeigt werden, wie sich durch den Einsatz einer flexiblen Testautomation die Meßzeiten verkürzen und Meßfehler vermeiden lassen.

Beispiel: Inbetriebnahme einer 2-Mbit/s-Mietleitung

Je nachdem, ob es sich bei der Mietleitung um einen SDH-Pfad oder eine PDH-Standleitung handelt, sind für die Qualitätsüberwachung verschiedenartige Einrichtungen eingebaut. Übliche Verfahren sind:

- Cyclic Redundancy Check (CRC) bei 2-Mbit/s-PDH-Leitungen bzw.
- Bit-Interleaved-Parity-Check (BIP) bei SDHund SONET-Übertragungswegen.

Für den störungsfreien Betrieb ist eine sorgfältige Einmessung nach der Installation wichtig. Überprüft werden nicht nur sämtliche Funktionen, die den normalen Betrieb betreffen, sondern auch das Verhalten beim Auftreten von anormalen Betriebszuständen, so wie sie in den entsprechenden Empfehlungen von ITU-T und ANSI genannt werden. Besondere Bedeutung hat die Analyse von systembedingten Folgeerscheinungen beim Auftreten von Taktabweichungen, Pointerbewegungen, Jitter und Wander.

Außerdem muß die korrekte Funktion der Alarmsignalisierungs- und Fehlerüberwachungseinrichtungen des Netzes, in das die neu einzurichtende Leitung eingebunden ist, nachgewiesen werden. Hierzu werden gezielt Fehlerzustände simuliert, welche dann zu einer entsprechenden Reaktion des Network-Management-Systems führen müssen.

Bild 1: Der Bedarf an Mietleitungen steigt und damit auch der Aufwand für den Qualitätsnachweis. Komplette PDH-Verbindungen und SDH-Pfade werden oft über Netze verschiedener Provider geroutet. Damit das reibungslos funktioniert. Zur Prüfung der Alamsignalisierung sind die folgenden Messungen typisch:

- Nachweis eines alarm- und fehlerfreien Signals im Normalbetrieb
- Nachweis der korrekten Reaktion bei den Alarmzuständen LOS (Signalausfall), LOF (Ausfall des Rahmenerkennungssignals) und AIS (Alarm-Indication-Signal auf der ankommenden Leitung)

Weitere Tests verifizieren, daß alle Schnittstellen-Parameter innerhalb der vorgeschriebenen Toleranz liegen. Dazu werden üblicherweise Messungen folgender Größen durchgeführt:

- Ausgangsjitter
- Jittertoleranz
- Ziehbereich (maximaler Takt-Offset)

Als Abschlußtest dient eine Langzeit-Bitfehlermessung mit einer Pseudozufallsfolge (Pseudo Random Bit Sequence, PRBS) als Testmuster. Damit ein Vergleich mit den Werten der Betriebsdauerüberwachung möglich ist, werden die Messungen normalerweise anhand der Qualitätsparameter ES, SES, US entsprechend der ITU-T-Empfehlung G.826 durchgeführt. Diese Abschlußmessung sollte 24 Stunden dauern, um aussagekräftige Werte für den Normalbetrieb zu erhalten.

Das gesamte Testszenario ist damit sehr umfangreich und nimmt entsprechend viel Zeit in Anspruch.

müssen Mietleitungen sorgfältig eingemessen werden.

Vergleich zwischen manueller Messung und Testautomation

In Bild 2 sind die einzelnen Schritte eines typischen Meßvorgangs dargestellt. Bei der manuellen Messung müssen vom Anwender alle Schritte von Hand ausgeführt werden. Das heißt, daß bei der Inbetriebnahme eines Systems oder einer Verbindung eine Prüfvorschrift Punkt für Punkt abgearbeitet werden muß. Die Praxis zeigt, daß dabei gleich an mehreren Stellen Meßfehler entstehen können. Bei automatisierten Testabläufen ist dagegen kein Eingriff durch den Bediener erforderlich, so daß eine Fehlbedienung praktisch ausgeschlossen wird. Außerdem läßt sich eine wesentlich höhere Meßgeschwindigkeit erzielen, da diese nicht mehr von der Reaktionszeit des Bedieners abhängt, sondern im wesentlichen nur durch die systembedingten Verzögerungen bestimmt wird.

Testautomation: Die wirtschaftliche Alternative

Auf der Suche nach rationelleren Prüfverfahren für den Betriebsdienst denkt man wegen der vielen Vorteile gegenüber der manuellen Messung in erster Linie an eine Testautomation, wie sie Systemhersteller seit langem in der Entwicklung, Produktion und Endabnahme zur Qualitätssicherung einsetzen. Bei diesen Lösungen läuft das erforderliche Testprogramm in der Regel auf einem externen Steuerrechner. Die notwendigen Einstell- und Meßbefehle werden über eine Fernsteuerschnittstelle an das Meßgerät übertragen. Fast alle modernen Meßgeräte bieten hierzu eine genormte Fernsteuerschnittstelle (z. B. IEC 625/IEEE 488-Bus oder RS232-Interface).

Zur Vereinfachung der Generierung von Benutzeroberflächen der notwendigen Testprogramme stehen heute leistungsfähige Hilfsmittel wie z. B. Lab-View oder LabWindows von National Instruments, hp-VEE, Keithley-Testpoint und weitere zur Verfügung. Einige Meßgerätehersteller verwenden auch eigene "Script-Sprachen", die das Erstellen von Testroutinen vereinfachen.

Mit Hilfe solcher Tools kann eine automatische Meßroutine optimal auf ein vorliegendes Meßproblem zugeschnitten werden. Der Zeitaufwand zur Erstellung hängt von der Komplexität der Meßaufgabe ab und kann von wenigen Tagen bis zu mehreren Mann-Monaten betragen. Zur Erstellung der Meßroutinen sind neben profundem Meßtechnik-Know-how auch entsprechende Kenntnisse in den gängigen Programmiersprachen erforderlich, beispielsweise in C, Visual Basic oder einer GPL (Graphical Programming Language). Während der Umgang mit den genannten Tools und das Beherrschen der eingesetzten Technologien heute zur Selbstverständlichkeit in den Prüflabors, der Qualitätssicherung sowie in den Regression-Test- und Entwicklungsabteilungen gehört, ist die Situation bei den Installationsgruppen der Hersteller und bei den Netzbetreibern etwas anders gelagert. Durch die Vielzahl der erforderlichen Tests und die unterschiedlichen Schnittstellen, an denen gemessen werden muß, kann das Testprogramm sehr komplex werden. Ein solches Testprogramm ist u. U. auch unflexibel und läßt sich nur mit entsprechendem Zeitaufwand an eine Änderung der Prüf- bzw. Einmeßvorschrift anpassen. Oft verfügen auch Prüftechniker nicht über das erforderliche Know-how, um solche Testprogramme zu entwickeln.

Ein automatisiertes Testsystem, das über einen externen Rechner gesteuert wird, ist relativ unbeweglich und für den mobilen Einsatz nicht besonders gut geeignet, selbst wenn man an Lösungen auf der Basis eines Notebook denkt.

Durch die geschilderte Problematik wurde bisher im Betriebsdienst eine Rationalisierung der Prüftechnik erheblich erschwert. Bild 2: Vergleich zwischen manueller und automatisierter Messung

Bild 3: Mit vordefinierten "Testcases" läßt sich schnell und ohne Programmierkenntnisse eine automatisierte Testsequenz generieren.

WG CATS: Die optimale Lösung für den Netzbetreiber

Mit der Software WG CATS (CVI Application Test Sequencer) wird ein schneller und unkomplizierter Einstieg in die Testautomation möglich, selbst bei komplexen Meßaufgaben. WG CATS wurde mit NI LW CVI erstellt und besteht im wesentlichen aus einer Sammlung von Standard-Testcases, welche vom Benutzer ohne Programmierkenntnisse angepaßt und in eine beliebige Reihenfolge gebracht werden können. Einmal erstellt, genügt ein Mausklick, um die komplette Sequenz auszuführen. Das Software-Tool zeichnet sich durch die folgenden Eigenschaften aus:

- Vollautomatischer Testablauf ohne Eingriff des Bedieners
- Eindeutige Ergebnisbewertung f
 ür jeden Testschritt, z. B. durch PASS/FAIL-Entscheidung basierend auf einer Toleranz- oder Me
 ßschwellenvorgabe
- Einfache Interaktion mit dem Benutzer bei der Konfiguration des Systems
- Vollständige Aufzeichnung aller Meßdaten in einer druckbaren Datei
- Einheitliches und leicht interpretierbares Testprotokoll
- Flexible Anpassung an unterschiedliche Me
 ßschnittstellen und Parameter

Bild 4: Als Voraussetzung für schnelle, automatisierte Meßlösungen bietet Wandel & Goltermann eine umfassende Bibliothek vordefinierter Testcases, die alle Messungen bei SONET/SDH/PDH- und DWDM-Strecken abdecken. Wandel & Goltermann bietet dieses Software-Tool für den Advanced Network Tester ANT-20 und weitere Meßgeräte. Es lassen sich damit Testsequenzen zusammenstellen, die direkt auf dem internen PC des ANT-20 ablaufen. Dabei werden unter anderem folgende Tests abgedeckt:

- Bitfehlertests
- Test der Alarmsensoren
- Test der Performance Monitoring Sensoren
- Test der Fehler- und Alarmsignalisierung
- Messen der APS-Zeit
- Jitter- und Wandertests
- Jittertoleranz und Jittertransfer
- G.826-Langzeit-Test
- "Trouble Scan" über alle Hierarchie-Ebenen eines SDH/SONET-Signals

Erstellen automatisch ablaufender Meßsequenzen mit Hilfe "Generischer Testcases"

Als Beispiel soll die nebenstehende Testsequenz betrachtet werden, die mit dem Advanced Network Tester ANT-20 erstellt wurde und alle zur Inbetriebnahme von 2-Mbit/s-Mietleitungen erforderlichen Meßaufgaben automatisch durchführt. WG CATS verwendet "generische Testcases". Das sind automatische Testalgorithmen, die sehr allgemein geschrieben sind und durch die Eingabe von Benutzerdaten an eine spezielle Meßaufgabe angepaßt werden können. Beispielsweise ist der Testcase "G.826-Analyse" genau so für ein 2-Mbit/s-Signal mit einer eingeschlossenen 64-kbit/s-PRBS-Payload einsetzbar wie für ein STM-1- oder OC-3-Signal mit einer 150-Mbit/s-PRBS-Bulk-Payload. Test-Parameter, wie z. B. Bitrate, Signalstruktur, verwendetes Testmuster, elektrische oder optische Schnittstelle usw., werden in den vorausgehenden Testcases gesetzt. In der betrachteten Sequenz wird beispielsweise die Signalstruktur gleich zu Beginn der Testsequenz definiert (Bild 8). Damit kann die gesamte Testsequenz sehr schnell an andere Bitraten angepaßt werden, indem lediglich die Parameter der Signalstruktur anders gewählt werden, der Rest aber weitgehend unverändert bleibt.

Neben den Testcases mit Meßfunktion gibt es eine Reihe weiterer, die verwendet werden, um dem Bediener bestimmte Anweisungen zu geben (z. B.

	Testsequence	Vorgang
Grundein- stellungen	 TX 2 Mbit/s CRC RX 2 Mbit/s CRC 	Setze TX-SignalstrukturSetze RX-Signalstruktur
Test der Parameter	 View Alarm BERT Pulling Range Check LOS Jitter Measurement Jitter Tolerance Delay Measurement G.826 Analysis 	 Nachweis Alarm-Freiheit Messe Bitfehler im Kanal Prüfe Ziehbereich (Offset) Setze LOS, erwarte AIS Messe Eigenjitter Messe Jitterverträglichkeit Messe Signallaufzeit G.826-Analyse (24 h)
Testende	Thank You	Testende

Herstellen einer Verbindung), Timer zu starten, Wartezeiten einzufügen, eine Grafik anzuzeigen, Steuerbefehle an andere Geräte zu senden oder bei bestimmten Ereignissen ein akustisches Signal zu erzeugen. Tabelle: Testsequenz für die Inbetriebnahme von 2-Mbit/s-Leitungen

Ganz einfach: Testsequenz laden und Messung starten!

Bild 5 zeigt den *Test Sequencer* mit der Testsequenz aus obiger Tabelle. Die Testsequenz wird durch Anklicken der Schaltfläche *"Run Sequence"* gestartet. Daraufhin läuft die gesamte Testsequenz automatisch ab.

Mit *"Run Test"* wird dagegen nur ein einzelner Testcase gestartet. Dies ist z. B. bei der Fehlersuche vorteilhaft.

Bild 5: Zur Durchführung einer automatisierten Messung wird die Testsequenz in den Test Sequencer geladen und gestartet. Der gesamte Test läuft ohne weiteren Eingriff des Bedieners ab.

Beim automatischen Ablauf der Testsequenz sind in der Regel keinerlei Eingriffe des Bedieners erforderlich. Der Teststatus wird durch Markieren des gerade aktiven Testcases laufend angezeigt. Jeder Testcase liefert auf der Basis seiner aktuellen Testgebnisse eine eindeutige PASS/FAIL-Entscheidung. Der Pass/Fail-Status bereits durchgeführter Tests wird ebenfalls angezeigt. Bei Bedarf kann die Messung jederzeit abgebrochen werden, z. B. um einen Fehler zu beheben. Die Testsequenz gilt als bestanden, wenn bei keinem Test die vorgegebenen Grenzwerte überschritten werden. Das Testende wird durch das Einblenden eines PASS- oder FAIL-Banners angezeigt (Bild 6). Zusätzlich kann ein akustisches Signal erzeugt werden.

Test Executive Seque	ence Editor			×
Test	File	Function	Input	
TX 2 Mb/s CRC fp	sig_stru.obj	_set_signal_structur	1#2,30,0,100 🔺	Edit
RX 2 Mb/s CRC fp	sig_stru.obj	_set_signal_structur	2#1,30,0,100	
Continuity Check	adh bas.ob)	check transparency	2,1¥1.000000	Insert <u>G</u> oto
Check LOS	al_sens.obj	check alarm	2,1#700,1,0.0	Cur
Jitter Measurement	jitter.obj	_check_jitter	4#100000,20,1	
Jitter Tolerance	jitter.obj	_check_jitter_tolera	3,2,1#1.0,1,0	Сору
Delay Measurement	delay.obj	_check_patterr_delay	1,2#2,380.00(
C.826 Parameters	g826.obj	_set_and_start_g826	2#1,8,60.0000	Paste
G.826 Analysis	g826.obj	_check_g826	2# 💌	
	Check Loss of Sign		Run Options	Insert Abo <u>v</u> e
Select TC	_ _check_alarm		Clear Edits	Insert Belo <u>w</u>
	Input Buffer 2.1#700.1.0.0		Setup/Cleanup	Spoty Loss
	File <u>N</u> ame:			
Select Eile	al_sens obj			DanaalEdity
		Sequence Attributes		UK
Test Preconditions	Descript <u>io</u>	n Setup/Cleanup.,.	Report	Cancel

Modifizieren von Testcases

Mit dem Sequence Editor lassen sich Testsequenzen neu erstellen oder modifizieren. Hierzu bedient man sich aus einem Satz sogenannter "Standard-Testcases", die aus der *Testcase List* (Bild 10) importiert und durch einfache Operationen (Copy, Paste) zu beliebig komplexen Sequencen zusammengestellt werden.

Oder man greift auf eine bereits erstellte Sequenz zurück und paßt diese durch Parameteränderung, Hinzufügen oder Löschen von Testcases an die geänderten Anforderungen an.

Bild 7: Mit dem Sequence Editor lassen sich Testcases mit den Bearbeitungsfunktionen Cut und Paste ausschneiden und an anderer Stelle wieder einfügen oder entfernen.

Device ANT20 Easic ID	1	RX-== TX-	
Signal Structure			
Signal type	PDH E1		•
Mapping	NO MAPPING		•
Payload - Access	FRAMED PATT E1	2 M PCM30	•
OV. Care	al		

Grafisches User-Interface (GUI)

Die je nach Anwendungsfall erforderlichen Meßparameter (z.B. Signalstruktur, Bitrate, Mapping, Toleranzgrenzen, Gating-Zeit usw.) sind über eine grafische Bedienoberfläche (Graphical User Interface, GUI) eingebbar bzw. veränderbar. Sie können leicht und schnell an die jeweiligen Gegebenheiten angepaßt werden (Bild 8 und 9).

Bild 8: Beispiel für einen Testcase mit grafischem User Interface: Mit *Signal Structure edit* wird die Signalstruktur für die gesamte Testsequenz definiert.

Bild 6: Bei bestandenem Test erscheint am Testende der Banner PASSED.

Bild 9: Mit dem Testcase *Alarm Sensor Check* lassen sich zum Test der Fehlersignalisierung verschiedene Fehlerzustände simulieren und die Reaktion des Prüflings testen.

Alarm Sensor Check			×
TX ANT20 Basic ID-1			
Alarm Stimulus	LOS	•	
	Ratio 16-6	ррb 🏮 0	
RX ANT 20 Basic ID-1	Wait until check (sec)		
Expected Alarm No. 1	RCI-2M	•	
Expected Alarm No. 2	NC-ALARM		
Expected Alarm No. 3	NC-ALARM	V	
CK Cancel			

Akzeptanz beim Benutzer steigt

Der Sinn programmierter Meßabläufe besteht auch darin, daß stupide, immer wiederkehrende Meßaufgaben dem Benutzer abgenommen und ihm Zeit für anspruchsvollere Tätigkeiten gegeben wird. Mit WG CATS kommt man diesem Ziel näher. Durch die Möglichkeit, Meßabläufe einfach durch Aneinanderreihen von vordefinierten Tests zusammenzustellen, ohne daß dafür spezielle Programmierkenntnisse benötigt werden, verliert der Anwender seine innere Hemmschwelle gegenüber dem Einsatz von Software.

Description	Test function name
WG-CATS Version 3.50	
*********	**********
* SDH Version ONLY	*
***************************************	*****************
Basic Testcases (included in BN 3035/95.90, 3045/	93.12 and 3045/93.13)
Set ITU-T Signal Structure RX/TX	set signal structure
Set ITU-T Channel Number RX/TX	set tributaries
Set TX Code, PRBS, Optics, Clock, Trigger, Level	set tx adaptation2
Set RX Code, PRRS, Optics, Sensitivity, Equalizer	_set_rx_adaptation2
Set SDH Overhead Byte	_set_SCH_POH_byte
Set Parameters for G826 and Starts G826	_set_and_start_g826
Set ITU-T Farameters for AFS and Starts AFS	_set_and_start_APS
Set 2 MBit/s SA Bit Sequences	_set_ss_bit_sequence
Setup ANX950 Module (7XI only)	_contrcl_NRZ
Define Trib.List for Scanning of Multiple Tribs.	_setup_mscan_trib
Increment Trib-Mumber of Defined Trib, List	_nscan_set_inc_trib
Check Transparency of selected channel	_check_transparency
Check Transparency of SDH DCCs, El, Fl, Kl/K2	check_byte_group_transparency

Verfügbare Testcases

Innerhalb der WG CATS-Familie stehen eine Reihe unterschiedlicher Testcase-Pakete zur Verfügung. Auf den folgenden Seiten wird gezeigt, daß sich damit nicht nur Einzelgeräte – wie hier der ANT-20 – sondern auch komplette Meßsysteme steuern lassen. Diese können z. B. aus Optischen Testgeräten, Meßstellenumschaltern und anderen Geräten aufgebaut sein. In diesem Fall übernimmt ein Gerät die Controllerfunktion und steuert die anderen Geräte über ein RS232- oder IEC 625/ IEEE 488-Interface. Die Meßanordnung kann bei Bedarf sogar via Modem oder LAN-Anbindung fernbedient werden. Bild 10: *Testcase List* zeigt die in der Software verfügbaren Testcases an. Ein ausgewählter Testcase läßt sich im *Sequence Editor* mit einem individuellen Namen versehen, bevor er in die Testsequenz eingefügt wird.

WG CATS vereinfacht Messungen an DWDM-Systemen

Im Gegensatz zu üblichen LWL-Übertragungssystemen, bei denen ein einzelnes SDH- oder SONET-Signal über die Faser transportiert wird, werden bei DWDM (Dense Wavelength Division Multiplex) zur Signalübertragung parallele Übertragungskanäle bei unterschiedlichen Wellenlängen ("Farben") genutzt. Versucht man in solchen Systemen die SDH- oder SONET-Parameter zu messen, so versagen die klassischen Meßgeräte mit breitbandigem optischen Eingang, da sie nicht in der Lage sind, aus dem Gesamtsignal die entsprechende Wellenlänge herauszufiltern. Dafür ist ein einstellbares Filter erforderlich, das vor den Eingang des SDH- bzw. SONET-Testers geschaltet wird. Diese Funktion übernimmt hier der gleiche optische Spektrum-Analysator, der auch zur Messung der DWDM-spezifischen Parameter verwendet wird. In Bild 11 ist eine Meßlösung mit dem Advanced Network Tester ANT-20 und vorgeschaltetem Optischen Spektrum-Analysator OSA-155 dargestellt. Der selektierte Kanal wird auf den Monitorausgang des OSA-155 durchgeschaltet und kann mit dem angeschlossenen ANT-20 analysiert werden. Mit dieser Meßanordnung läßt sich ein vollständiger Funktionstest durchführen, wobei der OSA-155 die optischen Pegel, den Signal/Geräuschabstand und die Wellenlängenabweichung bei jeder Wellenlänge mißt, während der ANT-20 die typischen SDH- und SONET-Parameter (Alarm, Fehlerraten, Jitter usw.) bei der jeweiligen "Farbe" analysiert. Wie man sieht, umfaßt eine typische DWDM-Messung sehr viele Einzeltests. Mit WG CATS läßt sich eine komplette DWDM-

Messung automatisieren, wodurch Zeit einge-

Messungen am DWDM-Signal als auch die

spart und Fehler vermieden werden. Sowohl die

Bild 11: Die Software CATS DWDM-Testautomation ist im ANT-20 installiert, der den OSA-155 DWDM-Systemanalysator steuert. SONET/SDH-typischen Tests lassen sich in eine einzige Testsequenz einbeziehen, die z. B. folgenden Meßablauf haben kann:

Meßebene	Testsequenz
DWDM- Signal	 Messe optischen Pegel bei jeder "Farbe" Messe optischen Signal-/ Rauschabstand bei jeder "Farbe" Messe die Wellenlängen- abweichung bei jeder "Farbe"
	• Stelle Filter auf "Farbe 1"
Selektierte "Farbe 1"	Messe SONET/SDH-Parameter
	• Stelle Filter auf "Farbe 2"
Selektierte "Farbe 2"	Messe SONET/SDH-Parameter
	• •

Die WG CATS DWDM-Software läuft auf dem PC des ANT-20, der auch die Steuerung des OSA-155 über das RS232- bzw. GPIB-Interface übernimmt. Bild 12 zeigt die grafische Bedienoberfläche, mit der sich der gesamte Meßplatz konfigurieren läßt. Für die Messung der SONET/SDH-Parameter werden die gleichen Testcases verwendet, wie sie auch an anderen Schnittstellen eingesetzt werden. In Bild 13 ist der Testcase zur Messung der DWDM-spezifischen Signalparameter dargestellt.

Bild 12: Zur Kofiguration des gesamten Meßplatzes dient das Fenster *Device Configuration*. Es wird automatisch beim Laden einer neuen Sequenz angezeigt. Alle Einstellungen lassen sich über Auswahlfelder schnell vornehmen.

🎆 Devi	ce Configuration							X
ID	Device	Interface	Prim Addr.	Slot	Aux. Select	SCPI Monitor & Error Check	Description	
1	🗘 OSA-155	🖨 GPIB	\$3		\$0		Opt. Spectr Analyzer	
2	ANT20 Basic	CINTERNAL					S0H Analyzer]
3	None							

Bild 13: In die Testsequenz lassen sich spezielle Meßfunktionen des OSA-155 einbinden. Mit dem Testcase *WDM Check Selected Channels* lassen sich z. B. Frequenz, Leistungspegel und Geräuschabstand bei den einzelnen Wellenlängen messen. Für eine schnelle PASS/FAIL-Bewertung der Meßergebnisse sind Grenzwerte eingebbar.

WDM Check Selected Channels	×
WDM Check Selected Channels Device Opt. Spectr Analyzer ID-1 Ch# Freq[THz] Description 1 190.100 colour # 1 2 190.200 colour # 2 3 190.300 colour # 3 4 190.400 colour # 4	Channel Grid Settings First Channel [THz]
	Power [dEm]
Select <u>A</u> ll <u>E</u> dit Description Select <u>N</u> one	I S to N (dE) I
Ckerrol	

Set OSA-155 Threshold S to N distance Number of chann	to WDM mode : -7. : 50. els : 4	00 dBm 00 GHz	
First Channel Channel Spacing	: 1540.5 : 200.0	57 nm 00 GHz	
Check Sel. DWDM Ch.	PASS		
Ch.# Freq[THz] dF 1 190.100 0. 2 190.200 -0. 3 190.300 0. 4 190.400 -0.	[THz] P[dBm] 025 -1.40 005 -1.30 003 -1.20 030 -5.60	SN[dB] 20.40 21.30 21.20 15.60	State Description PASS colour # 1 PASS colour # 2 PASS colour # 3 PASS colour # 4
ANT RX STM-16 RX signal type mapping payload-access DWDM Color # 1	PASS : STM-16 : AU4 VC4 : BULK		
 Check SDH Alarm	PASS		
Check B1 Errors	PASS		
DWDM Color # 2			
Check SDH Alarm	PASS		
Check B1 Errors	PASS		
DWDM Color # 3			
Check SDH Alarm	PASS		
Check B1 Errors	PASS		

Bild 14: Der übersichtliche Test-Report enthält alle wichtigen Daten und Meßergebnisse einer Messung. So wird sichergestellt, daß sich eine Messung jederzeit wiederholen läßt und Meßergebnisse reproduzierbar sind.

Deutschland

Wandel & Goltermann GmbH & Co. Vertriebsgesellschaft Postfach 11 55 72794 Eningen u. A. Tel. (0 71 21) 86 22 22 Fax (0 71 21) 86 12 22 E-mail: sales.germany@wwgsolutions.com

Schweiz

Wandel & Goltermann (Schweiz) AG Postfach 779 Morgenstrasse 83 CH-3018 Bern 18 Tel. 031-996 44 11 Fax 031-996 44 22 E-mail: sales.switzerland@wwgsolutions.com

Österreich GUS, Ost- und Südeuropa, Iran, Türkei Wandel & Goltermann GmbH Postfach 13 Elisabethstraße 36 A-2500 Baden Tel. (0 22 52) 85 52 10 Fax (0 22 52) 8 07 27 E-mail: mail.austria@wwgsolutions.com

Weltweit

Wandel & Goltermann GmbH & Co. Elektronische Meßtechnik Internationales Marketing Postfach 12 62 D-72795 Eningen u.A. Tel. +49 (0) 7121-86 16 16 Fax +49 (0) 7121-86 13 33 E-mail: info@wwgsolutions.com http://www.wwgsolutions.com